Defining the Genetic Architecture of Alzheimer’s Disease

Julie Williams CBE
Head of Neurodegeneration
MRC Centre for Neuropsychiatric Genetics and Genomics
Alzheimer’s disease

- 35.6 million people worldwide living with dementia in 2010, increasing to 115.4 million by 2050

- 822,000 people in the UK with dementia
Cost

How the £23 billion cost of dementia is met

Long term institutional social care and informal care costs make up the majority of the £23 billion figure.

Most of the cost of dementia – £12.4 billion per year – is met by unpaid carers. Social care costs are £9 billion, health care £1.2 billion and productivity losses £29 million.
Alzheimer’s Disease

• Symptoms include:
 – memory loss
 – problems with recognition
 – difficulty with language and thought

• Caused by loss of nerve cells

• Regions which control memory and language are most affected

• Genes known to contribute to disease development (Heritability: 59-79%)
Finding Genes for Alzheimer’s Disease
Alzheimer’s Disease: Early Findings

DNA variants which contribute to rare forms of AD

Mutations/DNA errors:

- PSEN1: > 170
- PSEN2: < 20
- APP: < 32

- PSEN1
- APOE Risk variant
- APP

Heritability of AD 59 - 79%
Genome-wide Association

Millions of DNA variants can now be tested on each individual
Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease

Denise Harold1,4,6, Richard Abraham1,4, Paul Hollingworth1,4,5, Rebecca Sims1, Amy Gerrish1, Mariam I. Hamshere1, Jaspreet Singh Pahwa1, Valentina Moskva1, Kimberley Dowzell1, Amy Williams1, Nicola Jones1, Charlene Thomas1, Alexandra Stretton1, Angharad R Morgan1, Simon Lovestone2, John Powell1, Petroula Proitsi2, Michelle K Lupton3, Carol Brayne1, David C Rubinsztein1, Michael Gill6, Brian Lawlor1, Aoibhinn Lynch6, Kevin Morgan7, Kristelle S Brown7, Peter A Passmore4, David Craig4, Bernadette McGuinness8, Stephen Todd1, Clive Holmes9, David Mann10, A. David Smith11, Seth Love12, Patrick G Kehoe12, John Hardy13, Simon Mead14, Nick Fox13, Martin Rosser13, John Collinge14, Wolfgang Maier16, Frank Jessen16, Britta Schüttmann16, Hendrik van den Bussche17, Isabella Heuser18, Johannes Kornhuber19, Jens Wiltfang20, Martin Dichgans21,22, Lutz Frolich23, Harald Hampel24,25, Michael Hull26, Dan Rujescu25, Alison M Goate27, John S K Auwe28, Carlos Cruchaga27, Petra Nowotny27, John C Morris27, Kristel Slegers28,29, Karolien Bettens28,29, Sebastiaan Engelborghs28,29, Peter P De Deyn30,31, Christine Van Broeckhoven29,30, Gill Livingstone25, Nicholas J Bass25, Hugh Gurling22, Andrew McQuillin22, Rian Gwilliam23, Panagiotis Deloukas25, Ammar Al-Chalabi24, Christopher Shaw24, Magda Tsolaki25, Andrew R Singleton26, Rita Guerreiro26, Thomas W Muñoz27,28, Markus M Nöthen27,28, Susanne Moebus29, Karl-Heinz Jockel29, Norman Klopp60, H-Erich Wichmann40,42, Minerva M Carraquillo43, V Shane Pankratz44, Steven G Younkin43, Peter A Holm1, Michael O'Donovan1, Michael J Owen1 & Julie Williams1

Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease

Jean-Charles Lambert1,3, Simon Heath5, Gael Even1,2, Dominique Campion5, Kristel Slegers6,7, Mikko Hiltunen8, Onofre Combarros9, Diana Zelenika4, Maria J Bulldo10, Béatrice Tavernier11, Luc Letenneur12, Karolien Bettens6,7, Claudine Ber13, Florence Pasquier13,14, Nathalie Fivet12, Pascale Barberger-Gateau12, Sebastiaan Engelborghs7,15, Peter De Deyn27,15, Ignacio Mateo6, Ana Franck16, Seppo Helisalmi8, Elisa Porcellini17, Olivier Hanon18, the European Alzheimer’s Disease Initiative Investigators19, Marian M de Pencorbo20, Corinne Lendon21, Carole Dufron21,22, Céline Jaillard24, Thierry Leveillard24, Victoria Alvarez25, Paolo Bosco26, Michelangelo Mancuso27, Francesco Panza28, Benedetta Nacminas29, Paola Bossi30, Paola Piccardi31, Giorgio Amoni32, Davide Serena33, Daniela Galimberti34, Didier Hannequin5, Federico Licastro17, Hilka Soinin6, Karen Ritchie13, Hélène Blanch13, Jean-François Dartigues12, Christophe Tsourio22,23, Ivo Gut4, Christine Van Broeckhoven6,7, Annick Alpérovitch22,23, Mark Lathrop3,35 & Philippe Amouyel1,3,14
Common variants at *ABCA7, MS4A6A/MS4A4E, EPHA1, CD33* and *CD2AP* are associated with Alzheimer’s disease.

Common variants at *MS4A4/MS4A6E, CD2AP, CD33* and *EPHA1* are associated with late-onset Alzheimer’s disease.
APOE

Genome-wide significance $P = 5 \times 10^{-8}$

CR1

$P = 1.3 \times 10^{-19}$

CLU

$P = 2.6 \times 10^{-22}$

MS42A locus

$P = 1.2 \times 10^{-16}$

PICALM

$P = 1.6 \times 10^{-19}$

CD2AP

$P = 8.6 \times 10^{-9}$

EPHA1

$P = 6.0 \times 10^{-10}$

BIN1

$P = 5.8 \times 10^{-15}$

CD33

$P = 1.6 \times 10^{-9}$

Genome-wide significance $P = 5 \times 10^{-8}$

Pericack-Vance, 2010

Seshadri, 2010

GierdraAs 2009; Kamboh, 2010; ADGC; 2010; Carrasquillo, 2010

APP, PSEN-1 & 2, MAPT

Pericack-Vance, 2010

Seshadri, 2010

GierdraAs 2009; Kamboh, 2010; ADGC; 2010; Carrasquillo, 2010

APP, PSEN-1 & 2, MAPT

Hollingworth et al, Nature Genetics 2011
Current Project
I-GAP: International Genomics Alzheimer’s Project

Collaboration between leading AD Genetics groups:

★ GERAD
★ European Alzheimer’s Disease Initiative
★ Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE)
★ American Alzheimer’s disease Genetic Consortium
★ Over 150 scientists from Europe and USA

Purpose:
Increase power to identify common and rare variants contributing to disease development
1000G Imputation and Association analysis of Stage 1 Samples

Meta analysis of imputed datasets 18600 cases and 41370 controls

Selection of 15,000 SNPs for follow up genotyping in Stage 2

Stage 2: Genotyping 11386 cases & 14604 controls

Secondary analyses: APOE Gene-wide Pathway

Stage 3: Genotyping 8500 cases 8000 controls
Total Sample: 100,000+

GERAD+
EADI
CHARGE
ADGC
GERAD2+
Kungsholmen
Russian
Spanish
ADGC2

11 (13) new AD susceptibility genes
Susceptibility Genes for Alzheimer’s Disease

New genes shown in red

+2 novel genetic loci from gene-wide analyses
Endocytosis: bringing large molecules into cells

- PICALM recruits clathrin and AP2 to plasma membrane and recognises target proteins
- BIN1 recruits dynamin to plasma membrane

CD2AP- scaffold protein involved in the regulation of receptor mediated endocytosis

CD33- may act as endocytic receptor mediating endocytosis

http://seiri1.med.okayama-u.ac.jp/research_activities/research_contents/index003wuhtml.html
Ubiquitination: clearing rubbish from cells

- Endosome
- Ubiquitin
- Microtubule
- Cell membrane
Components of the complement system are involved in synaptic pruning during neurodevelopment.

Adapted from Barres and Smith (2001) Science, 294 (5545), 1296-1297.
Immunity

C1q, C1r, C1s complex

C3, C5

C3b

CR1, CR2

C9

CLU

CU5bC9

CD33-

Expresses cell-cell interaction, regulates innate & adaptive immune systems

EPHA1-

May have roles in apoptosis and immunity

MS4A-

May have immune function

TREM2

CR1 also expressed in neurons in APP animal models

ABCA7 - ++ expression in hippocampus and microglia. Modulates phagocytosis of apoptotic cells via C1q

C3b binds pathogen and to CR1 or CR2 receptors on B-lymphocytes.

Adaptive immune response

Innate immune response
Population Risk of Alzheimer’s Disease Development

Genetic and lifestyle factors
Conclusions

• Alzheimer’s disease is complex: 26 genes known to contribute more to find

• Cardiff has led research identifying 22 AD genes

• Better understanding of Alzheimer’s disease

• New targets for drug development
Cardiff
Julie Williams
Michael J. Owen
Michael O’ Donovan
Denise Harold
Rebecca Sims
Amy Gerrish
Jade Chapman
Valentina Moskvina
Nicola Jones
Charlene Thomas
Sophie Russ
Amy Braddel
Kate Williams
Mathew Rawlings
Rhodri Thomas
Peter Holmans

London (IOP)
Simon Lovestone
John Powell
Petroula Proitsi
Michelle K Lupton
Ammar Al-Chalabi
Christopher E. Shaw

Cambridge
Carol Brayne
David C. Rubinsztein

Dublin
Michael Gill
Brian Lawlor
Aoibhinn Lynch

Nottingham
Kevin Morgan
Kristelle Brown

Belfast
Peter Passmore
David Craig
Bernadette McGuinness
Stephen Todd

Southampton
Clive Holmes

Manchester
David Mann

Oxford
A. David Smith

London (UCL)
John Hardy
Simon Mead
Nick Fox
Martin Rossor
John Collinge
Gill Livingston
Nicholas J. Bass
Hugh Gurling
Andrew McQuillan

Bristol
Seth Love
Patrick G. Kehoe

Germany
Wolfgang Maier
Frank Jessen
Britta Schürmann
Hendrik van den Bussche
Isabella Heuser
Johannes Kornhuber
Jens Wiltfang
Martin Dichgans
Lutz Frölich
Thomas W. Mühleisen
Markus M. Nöthen
Susanne Moebus
Karl-Heinz Jöckel
Norman Klopp
H-Erich Wichmann
Dan Rajescu
Matthias Riemenschneider

US Washington
Alison Goate
John S.K. Kauwe
Carlos Cruchaga
Petra Nowotny
John C. Morris
Kevin Mayo

US NIH
Andrew Singleton
Rita Guerreiro

US Mayo Clinic
Minerva M. Carraquillo
Shane V. Pankratz
Steven G. Younkin

EADI Consortium
Phillippe Amouyel
Jean Charles Lambert

CHARGE Consortium
Cornelia Van Duijn
Monique Breteler
Sudha Seshadri

Iceland
Thorlakur Jonsson
Stacy Steinberg

Alzheimer’s disease Neuroimaging Initiative (TGEN)